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ABSTRACT

The Lagrangian description of unsteady boundary-layer separation is reviewed from both

analytical and numerical perspectives. We explain in simple terms how particle distortion

gives rise to unsteady separation, and why a theory centred on Lagrangian coordinates

provides the clearest description of this phenomenon. Included in the review are some of the

more recent results for unsteady three-dimensional compressible separation. The different

forms of separation that can arise from symmetries are emphasized. Current work includes

a possible description of separation when the detaching vorticity layer exits the classical

boundary-layer region, but still remains much closer to the surface than a typical body-

lengthscale.
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1. Introduction

Mathematical descriptions of fluid flows must yield physical results that are inde-

pendent of the coordinate system and the choice of mathematical variables. For a given

physical model, the choice of mathematical formulation is determined by criteria of sim-

plicity and the insight that the mathematics yields of the underlying physical processes.

For many fluid dynamical problems, and particularly for steady flows, the simplest and

cleanest mathematics arises from the use of Eulerian coordinates. However, for other

flows, such as unsteady flows in which advection dominates diffusion, Lagrangian particle

coordinates may be more appropriate.

In this article we show how, over the last decade or so, the use of Lagrangian coor-

dinates has yielded insights into unsteady separation which investigations using Eulerian

coordinates in the preceding seventy years had overlooked. By 'separation' we refer to the

high-Reynolds-number flow phenomenon by which thin viscous boundary layers generated

next to a rigid surface can 'break-away' from that surface. This definition of separation

is close to that of both Prandtl (1904) and Sears & Telionis (1975). In addition it is

consistent with J.H.B. Smith's (1989, private communication) alternative, and equivalent,

definition that separation occurs when the dominant mode of vorticity transport away from

the surface, but within the boundary-layer, is advection.

We note that for two-dimensional flow past a rigid surface, unsteady separation is

ordinarily preceded by a stage of flow reversal. However, as Moore (1958), Rott (1956)

and Sears (1956) have pointed out: in unsteady problems the occurrence of reversed flow

or recirculating eddies need not imply the dramatic 'breakup' of the boundary layer in

which vorticity is driven away from the surface by advective forces - the process we call

separation. Conversely, the computations of Peridier & Walker (1989) and the experiments

of Didden & Ho (1985) show separation when the flow in the boundary layer is no longer

reversed.

An understanding of separation is of considerable interest in the design of air, land,

and sea vehicles because boundary-layer vorticity induces the important transverse 'lift'

forces exerted on these vehicles; therefore its ejection has a dramatic impact on the fluid

mechanical loads. For similar reasons, separation is important in the flow about obstacles

such as chimneys, cooling towers and offshore structures (e.g. oil-rigs), and it plays a role

1



in several physiological problems (e.g., the growth of atherosclerotic lesions). Unsteady

separation may also be closely related to phenomena that arise in the interior of turbulent

boundary layers (e.g., the formation of hairpin vortices). A better grasp of the physical

processes involved in separation may help in the construction of improved analytical and

computational fluid mechanics methods to describe these flows.

In section 2 we briefly highlight the assumptions inherent in classical boundary-layer

theory, and then describe a simple physical model of unsteady separation. At the start of

section 3 we review in detail the mathematical description of unsteady, two-dimensional,

incompressible separation. This is followed by an outline of the generalisations to com-

pressible three-dimensional flow, including the special cases when there are symmetries

present. A theoretical description of a 'weak' form of asymmetric separation, known as

'marginal' separation, is given in section 4. The differences in marginal separation resulting

from imposing symmetry are discussed in section 5, while closing remarks are given in sec-

tion 6. In keeping with the theme of this volume we concentrate on the Lagrangian picture

of unsteady separation, and refer the reader elsewhere for more comprehensive reviews of

steady separation, interacting theories, etc. (e.g. Smith 1986, Ghia 1987, Simpson 1989).

2. The Classical Boundary-Layer Model

There are two major approximations involved in deriving the well-known equations of

Prandtl's boundary-layer theory. The first is that viscous diffusion can to leading order be

ignored except in the direction normal to the local boundary. Usually this is not a severe

approximation in the sense that even when classical boundary-layer theory fails, (possibly

through the formation of singularities), it is seldom that viscous diffusion parallel to the

boundary is the neglected physical effect that needs to be reintroduced. Indeed, although

spanwise diffusion is important in G6rtler-vortex type flows, there are few instances except

fully turbulent flow where streamwise viscous diffusion is dynamically significant; it is this

observation that is the rationale behind the parabolised Navier-Stokes equations and other

simplified sets of equations such as those proposed by Smith, Papageorgiou & Elliott (1984)

(but see Cowley & Smith (1985) for a counter-example).

The other major assumption in classical boundary-layer theory is that the thin bound-

ary layer has no significant effect on the pressure distribution close to the wall. Together,
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these two assumptions imply that if some mechanism exists to generate large velocities

normal to the boundary there is neither a pressure gradient nor a viscous force induced to

oppose the motion; as a result velocities can, in principle, become unbounded (cf. flows

governed by the Navier-Stokes or Euler equations, where, except for special cases, pressure

gradients, etc., are generated to inhibit the development of large velocities).

In the case of unsteady separation, such unbounded velocities are in fact predicted

by classical boundary-layer solutions. These velocities are self-induced. To see how this

can occur, consider a little mass of incompressible fluid, (a fluid 'particle'), inside a two-

dimensional boundary layer. If the fluid particle begins to shorten considerably in the

direction parallel to the boundary, then to conserve volume, the particle must simulta-

neously expand in the orthogonal direction (see the schematic in figure la). Within the

classical boundary-layer model there is no resistance to such a distortion, and thus it is

possible to squash a fluid particle to 'zero-thickness' in the direction parallel to the bound-

ary, and consequently to 'infinite' thickness in the direction normal to the boundary. As

a result an 'infinite' velocity is generated normal to the boundary, and the fluid particles

above the squashed one are ejected from the boundary layer.

The central role of the deformed fluid particle in the above physical description sug-

gests that a mathematical analysis of unsteady boundary-layer separation based on La-

grangian coordinates may be significantly simpler than an Eulerian one. Further, the ob-

servation that viscous diffusion normal to the boundary is seldom important also suggests

that the new physics which needs to be introduced into the classical boundary-layer model

once the fluid particle has been excessively deformed, is a variation in pressure gradient

normal to the boundary. Indeed, starting from the Navier-Stokes equations it is possible

to formulate so-called asymptotic 'interaction' problems which account for the pressure

disturbances induced by the rapid stretching of the fluid particle (Elliott, Cowley &- Smith

1983). As demonstrated in section 4, Lagrangian coordinates are also advantageous in

solving a special case when the interaction is in some sense 'weak'.

3. Unsteady Boundary-Layer Separation

3.1 Lagrangian Formulation

Initially we will focus on two-dimensional incompressible flows as described by Van
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Dommelen & Shen (1982), and then we will indicate how the analysis was generalized

to three-dimensional compressible flows by Van Dommelen & Cowley (1990) (henceforth

referred to as VDC). For definiteness we assume that fluid with Newtonian viscosity v,

and density p is flowing with a typical velocity U past a body of typical dimension D.

Lengths, velocities, time and pressure are then non-dimensionalised by D, U, D/U and

pU 2 respectively, and a Reynolds number

R = UD/v,

which we assume to be large, is introduced. As is conventional in boundary-layer theory,

coordinates (x, R- fy) are taken parallel and normal, respectively, to the surface of the

body, while the corresponding velocity components are (u, R- 1v). The two-dimensional

boundary-layer equations in Eulerian coordinates are then (e.g., Rosenhead 1963)

ut + uu. + vuY = -p. + uY , (3.1a)

py =0, u +vY =0 . (3.1b, c)

If the surface of the body is fixed and impermeable, the boundary conditions on the surface

are

u = v= 0 on y= 0. (3.2a)

Far from the surface, the boundary-layer solution must match with a known inviscid flow

solution that provides a slip-velocity u. (x, t) on the surface of the body, i.e.

u--*u, as y-- oo . (3.2b)

Using this matching condition it follows that the pressure gradient is a known function of

x and t, i.e.,

-P = Ust + u8 ue . (3.2c)

Now we will formulate the same problem in Lagrangian coordinates, using fluid par-

ticles as the basis of the coordinate system. A convenient coordinate system for these

particles, ( , 7), is given by their Eulerian position at some chosen instant, say t = ti; i.e.,

,)= (x,y) at t = . (3.3)
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The velocity components of the flow are then related to the fluxions of position by the

kinematic relations

u(4,t) =(,t) , v(4,t) =y(,t), (3.4a, b)

where a dot represents a Lagrangian time derivative.

In Lagrangian coordinates, conservation of mass (3.1c) can be expressed in terms of

a conserved Jacobian determinant:

J(x y) =xC X,, = (3.5)

1 Y' Y ;,, I

where a subscript comma denotes a Lagrangian derivative. In these coordinates the mo-

mentum equation (3.1a) becomes

i = -p. + D,(D.u) , (3.6a)

where from (3.2c) the pressure gradient is a known function of x and t, and D. is the

Eulerian y-derivative. The latter can be written in the Lagrangian form (e.g., Shen 1978a):

Dyu = J(x,u) = XCu,, - . (3.6b)

In a Lagrangian formulation the boundary conditions (3.2a, b) remain essentially un-

changed, although they need to be supplemented by conditions on (x, y):

(x= , u=O) and (y=O, v=O) on i7=0, (3.7a, b)

= u --* u,(x, t) as q --* oo. (3.7c)

The main simplification of a Lagrangian approach is evident from the system of equa-

tions (3.4a, 6a, 6b, 7a, 7c) that provides sufficient information to solve for the position x and

velocity u parallel to the surface independently of the position y and velocity v normal to

the surface. It is this decoupling that is the key to much of the analysis that follows. Once

x is known, the normal particle position y can be found by integration of the Jacobian

(3.5) along lines of constant x; in particular

f0 ds (3.8)
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where ds 2 = d 2 + dy/2 , and the integral is performed in the Lagrangian (4, t) coordinate

system along the lines of constant x and t, i.e., lines that in physical space are vertical

through the boundary layer.

3.2 Hypothesis

To make further analytical progress it is necessary to make an assumption; namely

that up to and including the time of separation, the solution for the projected position x

remains a regular function of 4 and t. Any singularities that develop will then be associated

with irregularities in the continuity equation. From either (3.5) or (3.8) such singularities

can occur at a fluid particle, say 4 = 4,, if at some time, say t = t,, a stationary point

develops in x(4, t) (Van Dommelen & Shen, 1980), i.e. if

X.C = X,1 = 0 at 4 = 4., t = t,. (3.9)

There are several arguments in favor of the regularity of x, and the implication that

singularities form only in y. First, if x is assumed to be regular, then the analytic struc-

ture of several separation processes previously studied using Eulerian coordinates can be

recovered by a simpler Lagrangian analysis (VDC). Second, Van Dommelen (1981) showed

analytically that the inviscid version of (3.4a, 6a, 7c) has solutions that are regular func-

tions of the Lagrangian variables; he also showed that if (3.9) was satisfied y(4,t) and

v(4, t) become singular. Although this analysis can be extended by expanding in powers

of a small coefficient of viscosity, the example is somewhat artificial because during most

of the evolution of the bolundary layer, viscous effects are significant and cannot be ne-

glected. Similar analyses demonstrating the analyticity of the projected position for the

case of a three-dimensional inviscid flow with a symmetry line have been presented by Van

Dommelen (1981) for the flow on the symmetry line, and Stern & Paldor (1983), Russell

& Landahl (1984), and Stuart (1988, 1989) for the flow near the symmetry line (see also

VDC).

However, the most convincing argument in favor of the assumption of regularity comes

from numerical solutions of the Lagrangian boundary-layer equations. For example, Van

Dommelen & Shen's (1980) computation of the boundary layer on an impulsively started

circular cylinder provided direct numerical evidence on regularity of solutions x(4,t) to

the momentum equation. Further, the Lagrangian computations are in remarkably close
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agreement with the results obtained in terms of Eulerian coordinates by Cowley (1983)

using a series extension technique, by Ingham (1984) using a spectral method, by Mat-

sushita, Murata & Akamatsu (1984) using an integral method, and by Henkes & Veldman

(1987), Riley & Vasantha (1989a) and Puppo (1990). using finite-difference schemes. The

fact that all these different formulations and methods of solution produce results in ex-

cellent agreement with one another until very close to the breakdown of the solution at

separation, strongly suggests that the regularity hypothesis in Lagrangian coordinates is

correct at least for the particular example of the impulsively started cylindert.

Further support for the regularity of solutions of the classical boundary-layer equations

in Lagrangian coordinates is given by many other Lagrangian numerical calculations, e.g.:

(a) flow over a translating and rotating cylinder (Shen & Wu, 1988), (b) starting flow over

an airfoil (Wu, 1989), (c) flow on rotating and translating spheres (Van Dommelen 1987,

1990), (d) impulsively started flow through a curved pipe (Lam, 1988), and (e) vortex-

induced boundary-layer flow (Peridier & Walker, 1989). In particular, Van Dommelen

(1990) has performed high-resolution numerical calculations in a study of the boundary

layer at the equatorial plane of a spinning sphere - he found no evidence of singular behavior

in the solution of the momentum equation up to and including the start of separation.

Numerical calculations cannot, however, prove that solutions to the momentum equa-

tion are regular prior to separation. Besides, such a proof may be complicated because

(i) after a stationary point has developed the solution to the momentum equation can

become singular (Van Dommelen, 1990), and (ii) at large times the solution can become

exponentially close to a singularity (see section 5). In absence of a proof, for the rest of

this article we will assume that the solution for x is indeed regular.

3.3 Moore-R ott-Sears Conditions

As indicated above, the assumption that x(t,t) is analytic implies that singularities

can develop only in the continuity equation, and only at times at which the Lagrangian

It should be noted that some of the earlier Eulerian, finite-difference computations gave

different results, e.g., those of Telionis & Tsahalis (1974), Wang (1979), and Cebeci (1986). We

believe that these inconsistencies are not independently supported and that they do not show that

the regularity hypothesis is invalid.
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derivatives (3.9) vanish. This condition implies that for all infinitesimal changes in fluid

particle, 94, the corresponding change in particle position is

'x = O%.Vfx = 0. (3.10)

Physically this means that an infinitesimal particle volume 0OT8i around point s has been

squashed to zero size in the x-direction parallel to the wall. Because particle volume

is conserved, the compression in this direction is compensated for by a rapid expansion

in the y-direction. This drives the fluid above the squashed region a 0q 'far' from the

wall to form a separating vorticity layer (cf. the physical description given in section 2).

Such a process constitutes separation in the sense of Sears & Telionis (1975), since the

particle distance from the wall becomes too large, 'infinite', to be described by the usual

boundary-layer scale.

Yet a Lagrangian approach does more than just provide this natural physical descrip-

tion: it also makes it simple to verify that two properties known as the Moore-Rott-Sears

conditions are satisfied at separation (Sears & Telionis 1975). In the present context the

first of these conditions asserts that the separation structure moves along the wall with

the velocity of the squashed fluid particle. Therefore in a system that moves with the

separation structure, the velocity profile will be zero at the squashed particle. The second

condition is that the squashed particle has zero vorticity, which implies that the velocity

profile also has a stationary point at the particle.

We will be most concerned with the onset of separation and the particle which is the

first to be squashed to zero size in the streamwise direction (henceforth t, will denote

this particle and t, will denote the time of the onset of separation). That the first MRS

condition is satisfied at t, follows immediately from the asymptotic scaling (3.15c) derived

in the next subsection. However, solutions to the momentum equation can be found at

later times, even if their physical relevance is questionable (Elliott et al., 1983). For these

later times the first MRS condition follows directly from the requirement, (3.9), that the

Lagrangian derivatives vanish:
dIdXGSt) +d4MRS V fXZ = XiRMRS,t) (3.11)dx( Mas,t) = + "--

dt dt Vx=i(Mat),(.1

where C, (t) indicates the Lagrangian coordinate of a stationary point.
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The second MRS condition of zero voi ticity is a consequence of (3.6b, 9) because

Du=O when Vfx=O. (3.12)

Experimental confirmation of the MRS conditions in unsteady flow is given by Didden &

Ho (1985). For verification of these conditions in other unsteady classical boundary-layer

solutions, see, e.g., Williams (1977), and Van Dommelen & Shen (1983a).

3.4 Asymptotic Description

The regularity hypothesis, and the simplicity of the condition of vanishing Lagrangian

derivatives (3.9), enabled Van Dommelen & Shen (1982) to obtain a more precise descrip-

tion of separation near the squashed particle , at times close to the initial separation time

t,. To do this they formed a local Taylor series expansion. for the regular solution to the

momentum equation near the stationary point (4,,t.), and then expanded the singular

solution of the continuity equation in an asymptotic series.

To be more specific, if the function x(4, t) is a regular function of 4 and t, then close

to 4,,t,, it can be expanded as

X = X. + E 2,6&6 .,:). + E 916&4j6G(Xijk). +
ij ililk

+6t( . + ,(i)0 + ... )+ ... (3.13a)

where (71,72) = ( ,ij), xj = xf, 6 j = j - i°, 6t = t - t,, and the stationary point

condition (3.9) has been used. This expression can be simplified by the transformation

,= aij 6 , (3.13b)

which shifts the Lagrangian coordinate system to the separation particle, s, and with a

suitable choice ofaij, rotat: s it so as to eliminate the mixed partial derivative (x, 12), in the

new coordinate system. Henceforth we will adopt the convention of omitting the subscripts

comma and s if they occur together, i.e. xj = (xj.),. The Taylor series expansion (3.13a)

becomes

X=X°i,2 E 1
X = xl? + x~iilkjI, + ... + 6t(;, + Zj l +.) + (3.13c)

9



where the derivatives are with respect to the new coordinate system.

If t, is the first time that a stationary point occurs, the Taylor series coefficients

in the rotated coordinate system cannot be completely arbitrary because the singularity

condition may not be satisfied anywhere for 6t < 0. On expanding the condition (3.9) also

in a Taylor series it is readily verified that one of the coefficients xll and x22 must be zero

if 6t = 0 is the first time that a singularity forms; for definiteness (l, 12) are reordered such

that xil vanishes. The Taylor series (3.13c) can now be reduced to
1 2 + 113+ + t±1

x X(4.,t) + 1x22/2+ g 111l1 +...+ 6t(ilI +...) +... , (3.13d)

where only those terms which will turn out to be important at leading order have been

displayed.

VDC discuss flows where some of the coefficients in (3.13d) are zero due to symmetries

that impose additional constraints (also see below). For this part of the analysis it is

assumed that the values of these derivatives can be completely arbitrary and will in general

be nonzero; cf. the values given by Van Dommelen (1981) for the circular cylinder. There

are, ho ever, the following constraints on the signs:

X22i < 0 , xiiii~l < 0 . (3.13e, f)

The first of these simply fixes the positive li-direction, but the second is required if the

expression (3.13d) is to be free of stationary points for 6t < 0.

Under the above conditions, at times close to separation the lines of constant x in the

Lagrangian domain appear as sketched in figure 2a. At the separation time, the fold at

the separation particle s collapses to a cusp. Note that physically these lines are simply

vertical straight lines through the boundary layer, as indicated in the inset of figure 2a.

Next we turn to the integration of the Jacobian (3.5) to find the y-position of the

particles. This Jacobian is preserved by the transformation to the new local Lagrangian

coordinates, and has characteristics

dl1  + dl2  1 2
dy = X2212+..., dy =-2Xl/1 + ±l6t+... (3.14a, b)

A singularity occurs when both right hand side expressions vanish. Near the point s, the

first right hand side is zero on a surface approximating the 12 = 0 plane, while (3.13f)

insures that the second right hand side does not vanish in that plane when 6t < 0.
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At t = t, the boundary-layer approximation is obviously no longer valid because y

becomes infinite at the stationary point (see (3.8)). However, at times shortly before t,

a local description of the flow field can be obtained by asymptotic expansions. Following

the guiding principles of Van Dyke (1975), the aim is to scale the Lagrangian coordinates

l and the position coordinates x and y to variables Li, X, and Y such that in the 'inner'

asymptotic region the characteristic equations (3.14) are non-singular. This suggests that

the bt term in (3.14b), which ensures the absence of singular points for 6t < 0, should be

retained. Further, for 6t = 0 we want to match the solution close to the stationary particle

to a solution for y which is regular away from this point. Thus those terms that ensure the

absence of singular points away from particle , at time 6t = 0, i.e., the 12 and 12 terms in

(3.14), must also be retained. The appropriate scalings are therefore

11= i l , 12 tIJ L2 , (3.15a, b)

X = -X(4 , t) = 16t IX , y = 6t- Y (3.15c, d)

These scalings suggest that the separation process occurs in a relatively thin strip of size

161 3'2 moving with a velocity ±:(4,t).

For the scaling (3.15), the analytic solution for Y can be found by integration of (3.14).

The result is:

Y jLo dL Lo dL (3.16a)
VP(n;zX) L v/P(L;X)

where

P(L; X) = - x 22 (xjj1 L 3 - 6. 1 L - 6X) , (3.16b)

and Lo(X) is the real root of the cubic P . This root is a unique and continuous function

of X since P is a monotonically decreasing function of L from (3.13e, f).

The dependence on the coefficients of the Taylor series can be scaled out by the

transformations (Van Dommelen 1981):

2 1 x, 9

LI Ll X 3 l - X" Y= -"

(3.17a, b, c)

In terms of the new variables (3.16) reduces to

2 i
Y' (LI, X') ,-F(-Im) ± -F(im) , (3.18a)

A 2 A
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where

A(X') = (3(L;2 + 1)) , p(L3,X*) = 2 arctan ( A LI (

1 3L6/ '/--~X + + (1)- + X. 2) L)L + (X. _-/1 + X.'2) !) L
M(X) =2 +4A 2  

L(*

(3.18d, e)

and F(OIm) is the incomplete elliptic integral of the first kind. Further terms in the

asymptotic expansion can be found in principle.

The choice of sign of the square-roots and the limits of integration, etc. in (3.16a, 18a)

are determined by the topology of the lines of constant X, as shown in figure 2a. These

lines of can be divided into three segments corresponding to three asymptotic regions.

This subdivision is schematically shown by the variation in line thickness in figure 2a. The

lower segments start at the wall and extend upward towards the vicinity of the separation

particle. Because the Jacobian is nowhere singular along these segments, the y-positions

of the fluid particles remain finite on the boundary-layer scale, i.e., the scaled coordinate

Y is small. Therefore, these lower segments yield a layer of particles at the wall with a

thickness comparable to that of the original boundary layer; this is shown schematically

in figure 1b.

Along the central segments, the lines of constant X pass through the vicinity of the

separation particle. Here the y-position of the particles grows rapidly, and is given in

scaled form by (3.18). Thius the central segments cause the intermediate, thicker, layer

illustrated in figure lb. The topology of the central segments in the Lagrangian domain,

figure 2a, determines the choice of sign in (3.16a, 18a). From (3.13e, f, 14a,b) it follows

that on integrating upwards, L1 increases from large negative values towards Lo(X). Since

Y increases, along this part the negative sign in (3.16a) applies. At position LO, the lines

of constant X turn around in the Lagrangian domain and L1 again tends to -oo; along

this second part the positive sign in (3.16a) applies.

Along the third segments, the lines of constant X proceed upwards toward the external

flow. As in the lower segments, the Jacobian is no longer small here. Thus the changes in

y are finite on boundary-layer scale, and the third segments cause a layer of particles with

a boundary-layer scale thickness, atop the central region (see figure lb).
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Taking the boundary-layer scaling of the normal position into account, it follows that

the separation structure is one in which the boundary layer divides into a central layer of

physical thickness proportional to Re-L I6t- 1, between two 'sandwich' layers of thickness

proportional to Re-1.

3.5 Interpretation

We now turn to the physical interpretation of these results. The boundary-layer

thickness is asymptotically determined by the position of the upper particle layer in figure

lb; letting L* -+ -oo along the positive branch of (3.18a), we obtain from (3.16, 18) the

scaled thickness of the expanding central region near separation as

Y+*(X*)=2 /2X -L 3  -F(') (3.19a,b)
.V2-X*.--.L* 3J-.3L- A 2

The function Y+" (X*) gives the general shape of the boundary-layer thickness, and is

illustrated in figure 2b. Figure 2c is a plot of boundary-layer displacement thickness at

different times for an impulsively started circular cylirder calculation with u, = sin(x) for

t > 0 in (3.2b) (Van Dommelen 1981). In agreement with the scaling (3.15d), the numer-

ical calculation suggests that the displacement thickness becomes infinite at separation;

further the two graphs are in qualitative agreement regarding the shape of displacement

thickness near the separation particle. While a quantitative comparison is not possible

in this case due to the difficulty of obtaining accurate numerical solutions when 16tL is

small, confirmation of the scaling (3.15d) is given by Peridier & Walker (1989) in their

Lagrangian calculations of vortex-induced separation. They assume that the maximum

displacement thickness is proportional to 6t]-M, and show that M = 0.253 ± 0.003.

The particle propagation velocity x that causes the accumulation of particles at the

separation line is given to leading order by (see (3.13, 15))

x = - (4,,t) , 16tI ,±jL1 (3.20)

To describe this in the more familiar Eulerian coordinates, the transcendental relationship

(3.18) must be inverted. The inversion has been performed numerically. Contours of L!,

or equivalently contours of x or i, in the (X', Y') plane are illustrated in figure 2d. The

topology of this figure for 16t I , 0 is close to the computed lines of constant velocity

presented by Van Dommelen (1981) for finite 16th - reproduced here as figure 2e.
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Another point of interest is the shape of the velocity profiles. According to (3.20), as

separation is approached the Eulerian velocity profiles develop a large flat region of nearly

constant velocity near a local maximum or minimum - see figure 2f. Confirmation of both

the flat, almost constant, region and the turning point for the impulsively moved cylinder

problem is given by Van Dommelen & Shen (1980). Peridier & Walker (1989) also find an

almost constant region in their velocity profiles for vortex-induced separation, although,

rather intriguingly, there is no clear turning point; indeed, their profiles seem closer to an

inflection point at t = t,, t = t,.

The shapes of the velocity profiles in the sandwich layers at the edges of figure 2f

cannot be found from asymptotic analysis because they depend on the precise details of

the earlier evolution (see the remarks below (3.21)). It should also be noted that while

there is a local minimum (or maximum) in the velocity profile at separation, the existence

of such a turning point is not necessarily an indication that separation is about to occur.

For example, for the impulsively started circular cylinder, a minimum in the velocity

profiles develops quickly, after g diameter motion, yet separation occurs much later, after

3diameter motion (Van Dommelen & Shen, 1980).

A more useful indication of the start of separation is the rapid transverse expansion

of the lines of constant vorticity near the turning point in velocity. This occurs because

the above analysis is inviscid to leading order, so that the vorticity lines follow the motion

of the boundary-layer particles. The corresponding asymptotic topology of contours of

OL*/OY" is shown in figure 2g, which is close to the computed vorticity lines presented by

Van Dommelen (1981) for a time near separation (see figure 2h).

So far, the analysis has concentrated on the structure of the boundary layer in the

rapidly expanding central region. The asymptotic structures of the upper and lower sand-

wich layers still need consideration. The displacement of the upper sandwich layer by the

central region is given by (3.19) in scaled form, and it is convenient to use the Prandtl

transformation to account for it as a shifted transverse position coordinate:

= y- y+(x, t) ,(3.2 1a)

where to leading order

y+(x, t) ~ btl- Y+(X) (3.21b)
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The structures of both layers then take the form of regular Taylor expansions. In terms of

Eulerian coordinates, they are:

x',bt',(u-,(y),v-,(y)) and x) ,II
mr>0 M>

0

(3.21c, d)

respectively, where the sums run over the non-negative integers. The ut,, (i, > 0, r > 1)

and the v, (m,r > 0) are determined in terms of the u 0, but the latter functions

are indeterminate due to the dependence of the solution on earlier times (Van Dommelen

1981). The u, 0 must, however, satisfy the boundary conditions (3.2a) at the wall, and

match both at the outer edge of the boundary layer (see (3.2b)) and with the central inviscid

low-vorticity region (see Van Dommelen (1981) for the precise conditions). Similarly, the

solutions in the two sandwich layers and the central layer can be shown to match with a

boundary layer of standard width as IX I -- co.

3.6 Subsequent Stages

Naturally, the singularity structure derived here will not remain asymptotically correct

arbitrarily close to the time of actual singularity t = t, because the normal velocity

above the central inviscid region becomes infinite when the singularity forms. To be more

specific, at times close to t, the boundary layer thickens to O(R- i 16t 1) in a region with

a streamwise extent O(16tI). In moving past this locally thickened region of the boundary

layer, the fluid above the boundary layer experiences a viscous displacement velocity of

O(R- 16t1 - 1). Just above the boundary layer, there is an asymptotic region, 'an upper

deck', where this velocity perturbation is reduced to zero as a result of an induced normal

pressure gradient. The perturbation in this region is irrotational, and hence the induced

pressure-gradient perturbation is found from Bernoulli as

Ap. = O(R- 16tI- -) . (3.22a)

When this induced pressure gradient is as large as the T tt-accelerative forces in the ex-

panding central region, i.e. from (3.15c)

A = O(6t- ) , (3.22b)

there is a 'triple-deck' interaction. This occurs when

6t = O(Re-r), (3.22c)
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at which time the scaled boundary-layer displacement thickness has increased to O(Re)

(Elliott et al. 1983).

Confirmation of the scaling (3.22c) from accurate solutions of the Navier-Stokes equa-

tions is not yet available. However, Peridier & Walker (1989) have presented solutions

of the interactive boundary-layer equations for a range of large Reynolds numbers. They

find that a singularity forms even with the interactive effect included, say at t, (R). On

assuming that the difference in singularity times is proportional to RM, they find from

a regression analysis that M = 0.190 ± 0.024. Since 1T = 0.182, this suggests that the

singularity time is shifted by an amount consistent with the scaling (3.22c).

Their results also show that at R = 105 and R = 108 the singularity time is changed

by 35% and 10% respectively. This suggests that the relatively small power of the Reynolds

number in (3.22c) can lead to large differences between theory and experiment at moderate

Reynolds numbers. For instance, the numerical calculation of Van Dommelen & Shen

(1980) for the impulsively started cylinder predicts separation for infinite Reynolds number

at a position 1110 from the front stagnation point, at a time to(oo) = 0.75D/U where U

and D are the velocity and diameter of the cylinder. On the other hand, experiments (e.g.

Bouard & Coutanceau 1980, Nagata, Minami & Murata 1979, Nagata, Funada, Kawai

& Matsui 1985) and numerical solutions of the Navier-Stokes equations (e.g. Collins &

Dennis 1973, Ta Phuoc Loc & Bouard 1985, Pepin 1990) at Reynolds numbers less than

105, suggest that the boundary layer breaks away from the surface at significantly greater

angles and at later times; although it is of course difficult at finite Reynolds numbers to say

exactly when separation has occurred. However, if we hypothesize that the experimentally

observed secondary vortex forms within an asymptotically short time of t. (00) (as yet

there is no firm supporting analysis for this assumption), then the trend is towards the

theoretically predicted results as the Reynolds number increases; in particular the time, t ,

at which the secondary vortex forms decreases towards t,(oo): Ut,/D = 1.49, 1.00, 0.94,

for R = 550, 3000, 9500 respectively (Pepin 1990, private communication). More detailed

numerical calculations for R > 105 are needed to determine how large the Reynolds number

needs to be for the separation time to be within, say, 5% of its asymptotic value.

Another problem for which accurate numerical solutions are still required, is the de-

scription of the flow on the 6t = O(Re-) timescale (see Elliott et al. (1983) for a forniu-
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lation). One of the main numerical difficulties in this problem arises from the unbounded

matching conditions at the edge of the central inviscid region. Rather than trying a di-

rect attack, in the next section we will address a considerably more attractive interactive

problem for a case in which the separation is 'weak'.

Also, in lieu of a solution for 6t = O(Re- L), we note that a number of related in-

teractive problems have been studied. For instance, Cowley, Duck & Tutty (1988) (see

also Cowley & Van Dommelen, 1990) have obtained numerical solutions to the viscous

triple-deck equations which are in line with the suggestion of Tutty & Cowley (1986) that

solutions to these equations might terminate in a finite-time singularity. In particular, for

a growing Tollmien-Schlichting wave they find that while the pressure remains a contin-

uous function, its spatial derivative, and the wall shear, become unbounded at a finite

time. Their asymptotic analysis, and the simultaneous work of Smith (1988), is in broad

agreement with the numerical results.

Further, as mentioned above, Peridier & Walker (1989) have performed interactive

boundary-layer calculations using Lagrangian coordinates. They find singularities with the

same qualitative form as Cowley et at. (1988), and show that if the maximum wall shear is

assumed proportional to (t,(R)-t)-M, then a regression analysis yields M = 0.252±0.016

- this is consistent with one of the singularities presented by Smith (1988).

All these results suggest that while a 'triple-deck' type interaction modifies the form

of the classical boundary-layer singularity, it is not sufficient to eliminate finite-time sin-

gularities from the interactive equations. In an attempt to understand what happens once

the second singularity has developed (i.e. assuming one forms on the R- - timescale),

Smith (1990) has proposed an analysis for an even shorter asymptotic timescale.

As yet no asymptotic solutions have been presented which yield a description of the

flow for finite times beyond t, (but see Sychev (1979), Van Dommelen & Shen (1983b), El-

liott et at (1983) for interactive models of upstream slipping separation points). However,

we note that accurate Lagrangian solutions of the classical boundary-layer momentum

equations can be found for finite times after separation without difficulty (e.g., Van Doni-

melen 1990); the question then arises whether these solutions have any relevance at all. At

times beyond separation, vertical lines through the boundary layer appear in Lagrangian

space as shown in figure 2i rather than figure 2a (see VDC for similar figures when the

17



separation is symmetric). Although y is indeterminate for the shaded particles, the conti-

nuity equation can still be integrated along all lines of constant x that start at the wall; a

singularity develops only on the line passing through the saddle point in figure 2i. How-

ever, the physical relevance of such solutions is doubtful - especially for all those lines of

constant x that contain particles that have at some time been at a position, XMRS , where

the stationary point condition (3.9) was satisfied. These lines correspond to a growing

band towards the right of the line through the saddle point in figure 2i. Additional restric-

tions would exist if the interaction region accelerates particles to high streamwise velocity

or induces an appreciable pressure perturbation at finite distances. Yet such effects would

have to preserve energy and the center of vorticity (Van Dommelen 1981).

3.7 Three-Dimensional Compressible Flow

The analysis described so far generalizes to the case of compressible, three-dimensional

flow through the inclusion of an energy equation and a second momentum equation in the z-

direction along the wall. Both these equations are also independent of the normal position

y of the particles (Shen 1978b, VDC). The regularity hypothesis is now that the projected

surface positions x and z, plus the density p, are regular functions of the Lagrangian

coordinates 4 = ( , 71, () and time t (it is assumed that no shocks are present at the point

where separation starts).

The continuity equation becomes

p(4, t)H(x, z)J(x, y, z) = p(4, O)H( , ) (3.23)

Ahere J is the Jacobian, H(x,z) = hl(x, z)h3(x,z), and hl and h3 are the metric coeffi-

cients evaluated on y = 0 for the coordinates x and z respectively. The condition for a

singularity to form is that the Lagrangian gradients of x and z become parallel, i.e.

Vtx = A.Vz , (3.24)

for some constant A.

The physical description of separation given in section 2 is again valid in three dinien-

sions - the separation particle is squashed infinitely thin in the direction of the skewed

coordinate n = x - Xz. A generalization of the MRS conditions to three-dimensions can

also be shown to hold.
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3.8 Three-Dimensional Asymmetric Separation

The most general form of separation occurs if the initial singularity develops at a point

in the flow where there are no symmetries. An analysis based on expanding the position

coordinates x, z, and the density p, in Taylor series can again be performed (VDC). The

singularity is found to have a quasi-two-dimensional structure stretched out along the

surface line

7 = 7o(-,t) - \.-E+ \ 2)T 2 + A 3)-3 + \ 4)bt- , (3.25a)

where the origin is taken at the separation particle,

= X -x(4,,t) , i= z-z48,,t) I (3.25b, c)

and the A ) are constants that can be calculated from the Taylor series coefficients for x

and z. The scalings corresponding to (3.15c, d) are

7=(-Et)- ItIIX , -= 6t Z y = I6tL-Y . (3.26a, b,c)

Hence separation occurs in a relatively thin strip of width 1t 312 straddling a segment of

the oblique, curved separation line 7 = 70(7, t) of length T - 16t12.

Note that once the coordinates have been suitably skewed, the 16t1 scalings for X and

Y are the same as for the two-dimensional case. Moreover, the previous figures 2d and

2g can be interpreted as contours of constant velocity (or density) and constant vorticity

respectively for three-dimensional separation after a suitable scaling of the coordinates

to remove the dependence on Z (VDC). Similarly, by redefining A, m and other scaling

coefficients, the displacement thickness for three-dimensional separation can be put exactly

into the form (3.19). From such expressions it is possible to calculate contours of constant

displacement thickness. Asymptotically they have the form of a crescent shaped ridge.

The crescent shape is long and thin because the (7 - To) lengthscale is asymptotically

shorter than the T lengthscale. Figure 3 is an illustration of how contours of displacement

thickness might look at a finite time before separation (it was drawn by taking &tI = 0.06

and unit values for various coefficients - see VDC for further details). We also note that

because the separation is quasi-two-dimensional, a 'triple-deck' type interaction develops

with essentially the same scalings as before - e.g. see (3.22c). In particular, in the central
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interaction problem, the coordinate 7, which has an interaction length scale O(Re- ),

appears only as a parameter.

3.9 Separation on a Symmetry Line

While the description in the previous subsection is accurate when separation begins

at an asymmetric point in the flow, examples of separation occurring on a symmetry line

exist (e.g. Cebeci, Stewartson & Schimke 1984, Ersoy & Walker 1987, Xu & Wang 1988,

Wu & Shen 1990). For instance, separation first develops on a symmetry line in the case

of a spheroid at a relatively small, aligned, angle of attack. Yet the separation structure is

only a special case of the one described above for this flow, as well as others in which the

direction that the separation particle shortens is aligned with the symmetry line.

This changes for another type of symmetric separation, in which the separation particle

is being compressed towards the symmetry line. For instance, such finite-time symmetric

singularities are generated at the equator of an impulsively rotated sphere (e.g. Banks &

Zaturska 1979), at the apex of an impulsively heated horizontal circular cylinder (Banks

& Campbell 1982, Simpson & Stewartson 1982b), at the inner bend of a uniformly curved

pipe through which fluid starts to flow (Lam 1988), and at the stagnation points on a

two-dimensional symmetric body in oscillating flow (Riley & Vasantha 1989b).

The structure of this type of singularity on the symmetry line was first identified using

Eulerian coordinates by Banks & Zaturska (1979) and Simpson & Stewartson (1982a),

while Van Dommelen (1981, 1990) demonstrated that the same results could be recovered

by a Lagrangian analysis similar to the one described previously. Further, the simplicity

of the Lagrangian approach enabled VDC to extend the description of the singularity

structure a little distance off the symmetry line. They were also able to consider a more

general form of symmetric separation in which the singularity develops at a point rather

than along the entire symmetry line, e.g. as would occur in starting flow through a curved

pipe with nonuniform curvature.

This symmetric singularity is not reducible to the asymmetric one, but does have a

similar structure. If the coordinates x and z are perpendicular to, and aligned with, the

symmetry line respectively, then scalings corresponding to (3.15c) and (3.26a, b) involve

the same powers of 16t1. Further, the scaled displacement thickness can again be written in
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terms of a elliptic integral. However, the y-position of the separation particle, and hence

the displacement thickness, increases more rapidly, in particular as 16tl- 1; these scales are

illustrated schematically in figure 4.

The most significant difference between this singularity and the asymmetric one con-

cerns the velocity in the central expanding region. For the symmetric singularity this is

much larger than the velocity in the upper and lower vorticity layers, whereas the opposite

is true for the asymmetric singularity (at least in the frame moving with the singularity).

As a result, the pressure gradients induced by the rapidly increasing displacement thick-

ness are first felt in the vorticity layers. Since it is the central layer which is responsible for

the growth in boundary-layer thickness, it appears that the first asymptotic rescaling will

not lead to an 'interactive' effect that inhibits the development of the singularity. Instead,

it is likely that the singularity will continue to be driven by the flow in the central layer,

while significant changes occur in the upper and lower layers.

3.10 Numerical Verification of Symmetry Line Separation

As indicated above, until a mathematical proof is available, verification of the regu-

larity hypothesis rests on the properties of numerical solutions. One such calculation has

been performed by Lam (1988) for impulsively started flow through a uniformly curved

circular pipe at large Dean numbers (an idealized model of aortic flow). In suitable non-

dimensional coordinates, and assuming that the curvature of the pipe is much larger than

the radius of the cross section, the governing equations are (e.g. Pedley 1980)

u = , =sin(x)(w2 -w 2) + D 2u, (3.27a,b)

w =z, w=z, +Dw, (3.27c, d)

where x measures distance around the surface of the pipe from the outer bend (the inner

bend is at x = ir), z measures distance down the pipe, u and w are the corresponding

velocities, w,(t) is the inviscid velocity in the central region of the pipe, and D. is the

Eulerian derivative. If

S= x, t7=y at t= 0 (3.28a, b)

where y = 0 defines the surface of the pipe, the Jacobian J(x, y) again satisfies (3.5), while

Dyu is still given by (3.6b). The problem is fully specified by the initial and boundary
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conditions

u=0 , w =w, at t=0+, (3.29a)

u =v= w=0 on 7=0, and u--O,w-- w, as 7--*oo. (3.29b)

These equations have been solved numerically for the choice w, = 1 by Lam (1988).

Following Van Dommelen (1981) coordinate stretches were used in both Lagrangian direc-

tions. The one in the i-direction was chosen so that the tendency of fluid particles to

move towards the inner bend, which has the effect of decreasing resolution near the outer

bend at larger times, was compensated for by initially skewing the particles towards the

outer bend. In the 77 direction a tf scaling was used to expand the Rayleigh layer that

develops at t = 0+, and the semi-infinite coordinate range was transformed to 10, 1] using

an arctan mapping.

The flows on the symmetry lines = 0 and 7 = r were obtained by expanding x,

u, w in Taylor series in and ( - 7r) respectively. The resulting system of parabolic

equations for the leading order coefficients depends only on 0 and t. These equations were

marched forward in time using a second-order finite difference scheme. At each time step

the nonlinear difference equations were solved by Newton-Raphson iteration.

Away from the symmetry lines, the governing equations were again discretised by

second-order central differences; we note that it was not necessary to skew the finite-

difference molecules for the first-order spatial derivatives in (3.27b, d), as Van Dommelen

(1981) needed to do for flow past a circular cylinder (see also Peridier & Walker 1989).

For this two-dimensional problem it was not possible to solve the difference equations by a

Newton-Raphson iteration owing to the size of the Jacobian matrix. Instead a modified Al-

ternating Direction Implicit iteration scheme was used in which a partial Newton-Raphson

iteration was performed along successive lines of unknowns in the spatial domain. The

number of iterations necessary was reduced by first making a 'leapfrog' step to obtain an

initial guess for the solution. Lam (1988) gives further details of the method.

Once x was calculated, y was found by numerically solving the Jacobian equation.

Due to the singularity that develops, this was done by rewriting (3.5) in the form

d77d = (3.30)
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which is valid on lines of constant x. This equation was integrated with a Runge-Kutta

scheme using equally spaced steps in y; interpolation was used to find x,. as necessary.

Figure 5a is a graph of mini,, [Vfxl against time (in fact, because the separation

singularity develops on the symmetry line of the inner bend it is equivalent to a plot of

mini ,,, x c). Clearly Vfx tends to zero linearly in time; we conclude that for impulsively

started flow through a curved circular pipe, separation starts at t = to - 2.813. The

asymptotic scalings predicted for 16t1 << 1 (see figure 4) can be confirmed by plotting a
3

position in the upper vorticity layer as (y-7+ c)6tL against (7r-x)6t I- , as in figure 5b;

here 71 = 10 and t = 2.7, 2.75, 2.8 (the constant part -?7 + c, with c = 5.5 was included as

a first approximation to account for higher order corrections in the asymptotic expansion

for small 16ti). The singularity structure is verified because the plots collapse onto each

other.

3.11 Azisymmetric Separation

Another class of separation singularities is rotationally symmetric about the separation

point. For example, singularities develop after a finite time on the axis of a spinning disc

or sphere whose direction of rotation is impulsively reversed (Bodonyi & Stewartson 19.77,

Banks & Zaturska 1981, Stewartson, Simpson & Bodonyi 1982, Van Dommelen 1987), and

at the apex of a sphere which is impulsively heated (Brown & Simpson 1982, Awang &

Riley 1983).

A Lagrangian analysis similar to that above can be performed for this symmetry as

well (VDC). While the precise structure of the separation singularity depends on whether

or not the flow has swirl, both types of singularity have qualitative features in common with

each other and with the symmetry line singularity described above, e.g. the velocity in the

central expanding region is much larger than that in the surrounding vorticity layers. The
3

lateral scaling of the singularity is again I6tI , but the displacement thickness increases like
3

I6tL-1 and I6t-2 for flows with and without swirl respectively (see figure 4). The results

on the axis can also be obtained by Eulerian analysis (see above references), however the

singularity structures siightly off the axis were fir t obtained by the Lagrangian approach.

4. Asymmetric Marginal Separation

4.1 Introduction
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In the previous section we mentioned the two-dimensional unsteady interaction prob-

lem which develops when the pressure perturbations induced by a rapid growth in bound-

ary-layer thickness become too large to be neglected. As an alternative to studying this

difficult problem, a formulation in which the interaction is in some sense 'weak' is presented

below.

The work in this section was motivated by the observation that if a circular cylinder

of diameter D is oscillated perpendicular to its axis through an amplitude U/Q, then there

is a qualitative difference in the flow depending in the size of the Keulegan-Carpenter

number, KC = 27rU/QD.t In particular, for KC < KC, _ 1.3 a steady streaming effect

induces boundary-layer collisions at the stagnation points, but no 'vortex shedding' occurs

from the surface of the cylinder (e.g. Bearnian et al. 1981, Sarpkaya 1986). Note that

although such flows have usually been described as separation free, in our terminology the

boundary-layer collision is the result of a symmetry line separation; the initial development

of this symmetric separation singularity has been studied by Riley & Vasantha (1989b). For

KC > KC,, eddies are shed from the surface of the cylinder, at least while the flow remains

two-dimensional (see Tatsuno & Bearman (1990) and references therein for a more detailed

description of this flow and its relevance to offshore structures). For (KC - KC,) << 1,

we would expect the vortex shedding to be 'weak', and the question then arises whether a

theoretical description of the flow is possible.

In fact from a theoretical standpoint, the problem where the cylinder has been oscil-

lating ad infinitum is not especially attractive because of the complications arising from

the boundary-layer collisions at the stagnation points. A natural alternative is to consider

the start-up problem, or more generally a case where the cylinder is moved (possibly uni-

directionally) only for a finite time. As will be indicated below, the nature of the V'eak

separation for such problems is not as simple as first thought. A more attractive possibility

may be the case of separation induced by a vortex impinging on a boundary layer which

experiences an otherwise favorable pressure gradient (cf. Doligalski & Walker 1984). A

strong vortex will induce separation, whereas if it is sufficiently weak the flow is expected

to be separation free.

For the above flows, the boundary-layer solution depends on a variabhe parameter

t This is essentially an inverse Strouhal number.
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a, (the Keulegan-Carpenter number, the time that the cylinder moves, the strength of

the vortex, etc.), in addition to the Lagrangian coordinates and time. We assume that

for values of a less than some minimum value, say a,, no separation occurs, but that for

a > a, separation does take place. In the spirit of Stewartson, Smith &- Kaups (1982) we

call the separation for a z a, marginal.

Previous studies of unsteady marginal separation include the work of Ruban (1982a),

Smith (1982) and Smith & Elliott (1985). For the most part these authors considered

unsteady small perturbations imposed upon flows which were already close to the steady

marginal separation condition identified by Ruban (1981, 1982b) and Stewartson et al.

(1982). In addition, the timescale of the perturbations was slo: compared to the reference

time interval D/U (but, see Elliott & Smith (1987) for a discussion of a shorter timescale

problem which may develop subsequently).

Our aim is to provide a theoretical description of marginal separation when the flow

starts far from separation, momentarily apTmr .,cot-, iL, aaid then recovers to a strongly

attached state over an O(D/U) tir.- :ale. However, a complication which arises is whether

at the critical value of the pirameter a., separation occurs at a finite or infinite time. We

will show that both cases seem possible, anid btudy possible structures for representative

flows.

When the marginal separation occurs at a finite time, we again hypothesize that the

classical boundary-layer solution is a regular function of the parameter a, as well as being

a regular function of the Lagrangian coordinates ( , ?), and the time t:

x = x( , 7;t;a) . (1.1)

On this assumption, we will find a non-interactive description of marginal separation when

a , a,; this analysis will then be extended to include interactive effects. As at the

sta,, of section 3 the flow is taken to be two-dimensional and incompressible, although

generalizations are straightforward.

4.2 Non-Interactive Asymmetric Marginal Separation

The analysis of the marginal separation singularity is similar to the two-dimensional

asymmetric singularity described in the previous section. As before the existence of a

singularity is indicated by the development of a stationary point in .r(Ic, 77; t; a) at some
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position S:

xf = x, = 0 at S = (,,j.,t,a) (4.2a,b)

In this case the transformations that simplify the Taylor series expansion for x about

S are essential, and so these will be described in detail. Similar to the case of non-marginal

separation, we shift the origin of the Lagrangian coordinate system to the point S, and

then rotate the axis system to eliminate the mixed second-order Lagrangian derivative.

The shifted and rotated coordinates are denoted by (k, k2 , i, a), and a hat will be used

when dependent variables such as 1 are considered a function of these coordinates. As

before, if i, is the first time that a singularity forms, the fi rst-order derivatives and all but

one of the second-order derivatives at S must be zero:

'i;' = x ' = xk;,' =k, = 0 (4.3a, b,c,d)

The remaining second-order derivative, il j, is assumed not to be zero. If it were zero all

three second-ordcz derivatives would vanish in the original coordinate system, in addition

to the two first order ones. Those five conditions seem too restrictive for four independent

coordinates, and they are not required to obtain marginal separation.

Unlike the previous section, a second transformation is now helpful. First, we note

that since ij is non-zero, the location where the derivative 'r,;, vanishes defines a regular

curve k2 = k2, (kl; ; a). We shift the kl-axis to this curve by the transformation

k2 = k2 - k 2 (ki; a) (4.4)

The result is that the region where the derivative x- vanishes has been simplified to thei2

k2 = 0. Hence a singularity occurs when .,0; i; ) vanishes.

The requirement that there is no separation for negative values of a imposes an ad-

ditional condition that distinguishes marginal separation from the non-marginal case. In

particular, if the derivative xi were non-zero, a time t could be found where '(k, 0; a

was zero for small values of a^ of both signs, in contradiction of the assumption of marginal-

ity. The restriction

X =0 (4,5)
kt
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is therefore necessary (and in fact must be so even if i7-; was zero, since in that case the

axis system could be rotated to satisfy (4.5)).

The Taylor series for the streamwise particle position x has thus been simplified to:

(0,0; t; ): 2+ xk 3 X tk x - O +... , (4.6a)

where only those terms which turn out to be significant near the separation particle have

been retained. The following requirements on signs are needed in order that there is no

separation for negative a:

-P 2> 0 , X 2-. -< 0 (4.6b, c)Isk k I kitt kl k I k I t k ,a

Some care is needed with the first condition, because the second-order time derivatives

must satisfy certain restrictions if t is to be a solution of the boundary-layer equation; in

particular

li ;; = 0 (4.7)

To check consistency we note that the transformed derivatives can be expressed in terms

of the original ones as:

kXA2
_-_ __ ...... = (4.8a, b)

2 ^ X + x X (4.8c, d)
k 2 i2  kk2 k a

Since the boundary-layer equation does not restrict the zeroth and first-order time deriva-

tives, it appears that the conditions (4.6b, c) can, in principle, be met. See the next section

for an example where a similar restriction cannot be satisfied.

An important property of the flow for this type of marginal separation ca:Z now be

deduced from (4.6b) and the expression for the vorticity near the point S at the time of

separation t = a = 0:

w -i,;k
2  2izk, ; 2 ) + x k2 (4.9)

This expression is everywhere single-signed except at the separation point itself (for defi-

niteness we assume that it is negative), and thus the velocity profile must have a vertical
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inflection point. In addition, because diffusion acts to smooth out the vorticity distribu-

tion, we conclude at times before marginal separation, there must be an internal region of

positive vorticity, indicated by a negative slope in the velocity profile.

In ordzr to write the results in a standard form we now make a third transformation

in which the kl-coordinate is shifted to the location k1, where k (kl, 0; i; a) vanishes:

11 = ki - k, (i; a~i) (4.10a)

We also subtract the motion of the origin from the streamwise position:

X= - x, , x,(i;a) = ( ,,0;i;z) . (4.10b, c)

Summarizing the above three transformations, the total transformation consists the

initial shift and rotation of the Lagrangian coordinate system followed by:

=k - k1, (i;), 12 = 2- k 2 ,(kl;t;a) , = x - Xz(t;;) (4.11a,b,c)

These transformations leave the Jacobian unchanged, as well as the Lagrangian expressions

for the Eulerian partial derivatives in the boundary layer:

Of Of Of f - Of - Of=(Y' -- ) 1, ,L ,2 -)o 2 (4.12a, b)
a9x 491 .L 912 ay 912 12 91

The major effect of the transformation is the change in expression for the convective

derivative: a' -1,;- (4.13)a-t -1 ,,12

The advantage of the above transformations is that they significantly simplif" 'hc

Taylor series expansion for x in the neighborhood of separation:

1T12 2 + 1 1i 3 a + 11 : 2)1 + (4.14)

Also, by a suitable choice of the positive X. and 11 directions, and using (4.6b,c), we can

assume

T 21 > 0 , 1,1 > 0 ,2.> 0 , < 0 (4.15a, b, c,d)
2l2 I11111 Iltt 1a2
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4.3 Non-Interactive Vertical Particle Position

Next we turn to the non-interactive solution of the continuity equation. This solution

is almost identical in form to the one for non-marginal separation derived in the previous

section, although the scalings are slightly different. Similar arguments to those leading to

(3.15), suggest that an appropriate scaling is

11 = eL1  , 12 = e , t eT , (4.16a,b,c)

a = 2A , =eX , y 6- Y (4.16d, e,f)

where the artificial small parameter e, chosen so that A = 0(1), will prove useful when

considering the interactive case. We see that the separation region scales as (T.,y) =

O(tai-2), instead of O(t52,t-T) as in (3.15c, d). Nevertheless, in the limiting process

E --+ 0 the scaled displacement effect of the inner region is essentially the same as for the

non-marginal case of section 3:

LdY+ -dL
Y , / { f - + (4.17)21 v2 X -z -g - L 3 )

where, as before, LO is the root of the cubic polynomial in the denominator, the choice is
sign is as explained below (3.18), and Y+(X) is the value of the positive integral when

L1 = -00. Note that for coefficients satisfying (4.15) solutions can be found for all scaled

times T if A < 0, but that if A > 0 then a singularity of the form discussed in the previous

section develops at T = - -2 A/il .Ila IItt

4.4 Interactive Streamwise Particle Position

We now turn to the description of the interactive effects induced by the large dis-

placement represented by the scaling (4.16f). Clearly the asymptotic region that gen-

erates the large boundary-layer displacement effect is the rapidly expanding 'central' re-

gion in the vicinity of the stationary point. Further, the scalings (4.16b,c) imply that

0/012 >> (0/Or,0/0 1 ); thus in that region the convective derivative given by (4.13) can

be approximated by the 0/012 derivative term. In other words, only spatial derivatives

remain; due to the relatively rapid motion of the particles through the inner region, the

pressure gradient appears quasi-steady to them.
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The first interaction effects are expected to occur when the O(R- 2L e-") induced

pressure gradient (cf. (3.22a)), becomes comparable to the 0(1) particle acceleration near

the stationary point (cf. (3.22b)). The resulting scalings in the central region are again

of the form (4.16) provided the parameter E is identified as R-T . However, it is now

appropriate to include a pressure expansion of the form

p - p(i; &) + f3 (piX + P) , (4.18)

where P is the pressure disturbance induced by the rapidly growing boundary-layer thick-

ness.

In the central region the leading order asymptotic approximation to the Navier-Stokes

x-momentum equation is
^ 2 2

k2,;X. k2  -Px , (4.19)

where we have identified the constant term from the non-interactive solution which is valid

for large negative T. The leading order approximation to the normal momentum equation

shows that P is again independent of Y, while the continuity equation remains

X Y - X Y = 1 (4.20)

,L , ,L 2  ,L 1

The first integral to the momentum equation (4.19) is:

X 2 = 2.t (X - QP - C(L1 ; T; A)) (4.21)
.L2 1212

where
21

Q = 2(212 k2. )-i (4.22)

Further, it seems that a general functional form for C can be excluded because of the

curved topology of the lines of constant X in the Lagrangian domain. In particular, except

for special choices of C, the limit L 2 -* ±oo introduces two internal asymptotic regions

into the downstream non-interactive boundary layer. One of these regions corresponds to

particles emerging from the interaction region, but the other has particles entering it and

there is no apparent justification for such an asymptotic structure there. Based on the

assumption that the second term in the expansion of the non-interactive region is O(R- ),
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we conclude that the integration constant C which matches the non-interactive solution is

given by

C(LI;T;A)= 2 3 1  T2 + X A)LI (423)

4.5 Interactive Vertical Particle Position

With the streamwise particle position known, we can now integrate the continuity

equation (4.20) using (4.21,22,23) to find the displacement effect of the central region (cf.

(4.17)):

- Lo dL (4.24)

I 2x IX _ Qp - 1X L 3 
-2 A)L}

where Y+, etc. again have the same general form as in section 3. In terms of (3.19a), the

total displacement effect of the central region felt at the top of the boundary layer can be

written in the form:

+ 1 y+,(X QP (4.25)

whcre

a212 (4.26a,b)

are constants while
F_
I T 2X

3= I T2 + 1 A (4.26c)

Since the function Y+" can be stored in table form, the numerical solution of the central

region requires no more than table look-up. In contrast, the finite difference solution of

the non-marginal central region is awkward because of the irregular behavior of the flow

near the edges of the region (Elliott et al. 1983).

4.6 Bordering Vorticity Layers

The analysis so far has determined the asymptotic solution in the rapidly expanding

region near the stationary point. As in the non-marginal, non-interactive case of section 3,

the boundary-layer particles below the central region form a non-separating vorticity layer

at the wall, while those above it form an ejected vorticity layer.

31



For the lower vorticity layer, we propose the scalings

11 , 12 = 12,(11; t; &) + 3L 21  T = E 3 X , y , (4.27a,b,c,d)

in which 12, is the marginal but non-interactive prediction for the location where T = 0.

These scalings imply that the pressure variations across the wall layer are negligible, while

the O(E3 ) velocity perturbations parallel to the wall behave inviscidly. The slip-velocity

generated by these perturbations means that a viscous wall layer must also be present with

the scalings

11 = ll" (i; &) + E LI " 12 = 12, (1; i; &) + E3L2, , Y = 6 €Y ,

(4.28a, b, c, d)

where h (; &) is the non-interactive value of 11 at the location on the wall where T = 0.

No further details of the solution in this region are given since this layer has no leading

order effect on the separation processes.

In the upper vorticity layer, an expansion similar to the one for the wall layer holds

(cf. (3.21)),

11 2 =l2(;t;)+ 3  = E3 X , y = --. (4.29a, b,c,d)
ET

The streamwise momentum equation again behaves inviscidly, and the normal momentum

equation predicts that the pressure variations across the layer are negligible. In addition

the Jacobian shows that variations in 9 along lines of constant X are 0(1), thus confirming

that the dominant displacement effect at the upper edge of this region is that generated

by the c -Y+ central region term.

4.7 Upper Deck

The large displacement effect at the top edge of the upper vorticity layer leads to a
1 7

relatively strong, O(R- 2C ), viscous blowing velocity out of the boundary layer. This

blowing velocity is significantly reduced in size in another asymptotic region, often called

the 'upper deck', above the separating boundary layer. An examination of the scales

involved demonstrates that the flow field in this region is irrotational, and hence it is

preferable to use Eulerian coordinates. Suitable scalings are

3X R y= 3Y , (4.30a,b)
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u = Uas(i,&) + e3 (iijX + iY2 + f) , R- v = e3 (/i1 + )) , (4.30c, d)

where u,, is the classical inviscid slip velocity above the separating particle, the linear

terms in X and are part of the classical irrotational solution (including curvature effects),

and the U and V represent the perturbation generated by the displacement effect. From

matching to (4.29d) it follows that

V(X,O;T;A) = (u., -XY x+  on Y = 0 , (4.31)

and we also require that V -* 0 as Y -* oo. From potential flow theory the blowing

velocity (4.31) can be shown to induce a pressure field, which near the wall is given as

P (ues - x,__)2  + 'dX, (4.32)
7r 00X -X'

4.8 Result

The equations (4.25, 26, 32) and (3.19) form the unsteady marginal interaction prob-

lem. By means of the transformation

X Y3± p (uts - xs )2 (U's - x. )2Q
z (= 2 (4.33a, b, c)

the nonlinear equation (4.32) can be written in the one parameter form

-Y+* ' P) dXP i 2 - dk' (4.34)
_7r 00 - f c '

where P - 0 as 1±1 oo. This system is simpler than the interactive problem described

by Elliott et al. (1983), and it should be relatively straightforward to find numerical

solutions. For the time being we note that while the interaction is expected to change the

form of the sulution significantly if the scaled parameter A is negative, it still appears,

from the definitions of fi and p in (4.26c, 33b), that a singularity develops at a finite time

if A is positive (cf. (4.25)). This seems to add support to the theory and calculations of

Cowley et al. (1988), Smith (1988, 1990) and Peridier & Walker (1989) that outer-deck

pressure interactions are not sufficient to eliminate singularities in unsteady separation.

Of course, while the above analysis is consistent to leading order, if it is to be of physi-

cal relevance example solutions of the classical boundary-layer equations that demonstrate
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marginal separation must be found, i.e. solutions which satisfy (4.3, 5, 6b, c) at the point

S. Attempts to find such an example for a circular cylinder moved in various monotonic

and oscillatory paths have yet to be successful; clearly the mere existence of a certain type

behaviour does not necessarily imply that it occurs in all situations. A more promising

class of flows might be those induced by vortices; certainly the velocity profiles presented

by Peridier & Walker (1989) for such flows are close to the behaviour required by (4.9).

5. Large-Time Marginal Symmetric Separation

5.1 Introduction

As outlined in section 3, the possibility of separation at a line of symmetry has been

examined by Banks & Zaturska (1979), Simpson & Stewartson (1982a) and Riley & Vas-

antha (1989b) from an Eulerian standpoint, and by Van Dommelen (1981, 1990) and Lam

(1988) using a Lagrangian approach.

The question arises whether the symmetry might lead to significant changes in mar-

ginal behavior; we will show that it does. In particular we find that symmetric marginal

separation is not ordinarily possible at a finite time if the solution to the momentum

equations remains regular. We also show that marginal symmetric separation can occur

at infinite time, and we propose asymptotic scalings for it.

5.2 Conditions for Finite Time Marginal Separation

In the case of symmetric separation, x is an anti-symmetric function of (e.g. Van

Dommelen 1990). The development of a singularity is thus characterized by the Lagrangian

derivative x.4 (77; t; a) vanishing on the symmetry line, i.e.

x = 0 , (5.1)

since the other first derivative is identically zero by symmetry. The singularity must also

occur in the middle of the boundary layer, which implies that the first zero is a minimum

in the xr, profile, i.e. the first derivative of the profile with respect to il must vanish:

x (= 0 (5.2)

However, if the point (77,; t, ; a,) represents the lowest value of a for which a singularity

occurs, an additional condition needs to be satisfied. In particular, if xf t were nonzero,
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the condition x, = 0 would define a regular surface t = t, (ri; a) with values for both signs

of (a - a,). To avoid this, a necessary condition for regular marginal separation is

X = 0 . (5.3)

The Taylor series about the separation point for finite-time marginal separation thus

becomes:

x,. - ]x7,,)2 ± XE,,(77-r -to) + x,(t-to) 2 + x .(a - a) + .... (5.4)

Now, in order that there is no separation for a < a,, the quadratic terms in (5.4) must be

definite; yet, if x is to satisfy the boundary-layer equation, the second-order time derivative

xctt must be zero (Van Dommelen 1990). That leads to a contradiction, and we conclude

that (5.4) cannot describe ,m rginal separation. Hence, either the initial separation time

must approach infinity - len the parameter a reaches its critical value, or the structure

must become sing:lr in Lagrangian coordinates. A possible exception occurs if x ,, also

vanishes, so +ILat the marginality depends on higher order derivatives. However, there

seems no justification to expect this derivative to be zero at the same point that (5.1,2,3)

are satisfied.

5.3 Large Time Marginal Structure

To establish what happens when the separation becomes marginal at a symmetry

line, numerical computations were conducted for impulsively started front stagnation point

flows. After some trial and error it was decided to concentrate on a rigid body which is

started with unit velocity, decelerated, accelerated again and then kept at unit velocity.

More precisely, we prescribed the streamwise gradient G = 8u /&x of the external flow

velocity at the front stagnation point as

G = (1-a) +acos(Qt) , for 0< Qt < 2r ; (5.5a)

G = 1 , for 27r < Qt . (5.5b)

Numerical solutions were obtained using Lagrangian coordinates since these give a precise

definition of when separation starts. Preliminary runs suggested that the computational

times would be minimised by setting Q = 1.1 (see also Riley & Vasantha, 1989b). In
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figure 6a we have plotted the separation times as a function of a for this choice of Q.

Separation was found to occur for a > a, - 0.879. In the same graph we have also

plotted the time, say ti, at which xc attained its (positive) minimum for a < a,. The

apparent symmetry of the figure about a, is true to graphical accuracy, which allows a

relatively precise estimate of a, to be made. Note that both times rapidly increase as a, is

approached. Further evidence that these times become infinite for a = a, is given in figure

6b which is a plot of t, and t, against In ja - a, 1. There seems to be a linear dependence

(in fact t, ; -- In ja - a, I + constant), in agreement with an infinite time of marginal

separation.

A naive attempt to obtain an asymptotic description of the marginal singularity using

exact solutions to the inviscid momentum equation, as was done by Van Dommelen (1981)

for the non-marginal case, appears to fail here. However, careful examination of the

numerical solutions suggested a possible asymptotic structure for a = a,. This turns

out to have significant regions of steady flow. Since it is usually simpler to describe these

in Eulerian coordinates, for the rest of this section we revert to the Eulerian form for the

equations of motion:

gt + g2 + vgV = Gt + G 2 + gy , (5.6a)

g+vY =0 , (5.6b)

where g is the streamwise gradient of the velocity on the symmetry plane.

First we recall that the standard symmetric separation singularity has a negative local

minimum for g that approaches negative infinity as t -- t, (e.g. Banks & Zaturska 1979).

However, because the second derivative of a function is non-negative near a minimum,

some a priori estimates restrict the possibility of separation. In particular, if the value of

the minimum for g is at or above -G once G is positive, the minimum value must increase

with respect to the external flow value G, so that separation cannot occur. The marginal

case seems to occur when the minimum of g approaches -G from below - this value, (here

-1), is indeed a stationary position of the inviscid part of the momentum equation (5.6a).

For the asymptotic region within which g is close to -1, there are a range of asymptotic

scalings which select only the steady, inviscid terms from the momentum equation at

leading order. The precise scaling is fixed by the condition that the unsteady and viscous
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coriection terms do not introduce singularities in the expansion at the minimum in the

velocity profile. This requires that both correction terms appear at the same order in

the asymptotic expansion. After some algebra these considerations lead to the following

scalings and solution for the expanding central region:

t-t0=r , Y-030=71Y , (5.7a,b)

g - cos(Y) -,r- + r- 131 sin(Y) - r 2 (cos(Y) + Ysin(Y)) (5.7c)

1 13v -r sin(Y) + r- IY + r 31cos(Y) + r -2(2sin(Y) - Y cos(Y)) (5.7d)

where i30 and f31 are constants defined below, and to is a constant which is chosen to

eliminate a complementary function in the first-order terms. Note that the undetermined

constants which appear in each term of (5.7c, d) when the relevant governing equations

are solved, are fixed either by matching with the Hiemenz layer adjacent to the wall (see

below), or by the requirement that the term one order r- 1 smaller is free of singularities

at Y = 7r, i.e. where g ; -1.

Near the wall, a perturbed Hiemenz front stagnation point boundary-layer profile

exists:

v , vo(') + 7- 1vI(y) + 7- 2v2(y) + 7- 3V3(Y) +... (5.8a)

where

Y Y - 3o , (5.8b)

and 030 - 0.64790 is the Hiemenz displacement thickness. Runge-Kutta solutions of the

governing equations for the vj, using the following asymptotic behaviour for large y,

vo-~ -Q , (5.9a)

v P + 23 +01 ,(5.9b)

1 -5 _101-2 +3-
v2 - 3 1Y + Y+ 3 2 , (5.9c)

V3 " 7  1 ,'319 4 + 1 3 _(3,31 -+ 132)9 2 + (3 + 1'31)y + J33 (5.9d)

yield

31= 0.10285 , 032 = 0.0821 , /33 = 0.200 , (5.9c,f g)
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and the normalized wall shear gradient as

gy ,, 1.232588 - r- 10.473524 - r- 20.32339 - r- 30.58698 (5.10)

As in the preceding sections, above the central expanding region there is an upper

vorticity layer present, although here the velocity is only slightly perturbed from the G = 1

external flow (unlike the finite velocity variations of sections 3 & 4). We again use the

transposition theorem

= - Yref(t) , -3 v-Yref(t) , (5.Ila, b)

where
-3

Yref(t) ,- 27rr + 130 + 7 - r -
2 r + ..- , (5.11c)

to subtract off the appropriate upward motion of the viscous layer. With this choice of

Yref the upper viscous layer expands in integer inverse powers of T:

D - - + r- + , (5.12)

vDJ a{ ( 3+ ) 2 +l 2 dV - J (y 3  + -e 27 , (5.13a)

9 2 (,2 + 1)2

where

- (. 2 +1) 2 dY} (5.13b)

Finally, in order to complete the asymptotic solution. it is necessary to consider one

more region, because far above the upper vorticity layer the exponentially small distur-

bances in the almost potential flow are determined by the initial solution (cf. Brown &

Stewartson 1965, Van Dommelen & Shen 1985). We therefore introduce an adjustment

region where

=--ee'- , W=, - 2 ,, w2 + 4-r + W 2 (Y)+... (5.14a, b, c)

The function W 2 is not fixed by substituting into the momentum equation, and may depend

on the time evolution. However, for small Y, matching with (5.12, 13) yields

W2,41n(Y)+ln(-lnY)-ln( 2a1) , (Y j 0) (5.14d)
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while for large Y an analysis similar to that of Van Dommelen & Shen (1985) gives

W2 2In(Y) + boo , (Y T oo) (5.14e)

where boo is a constant.

The large time marginal structure derived here seems self-consistent and agrees qual-

itatively with numerical data. However, the Lagrangian numerical computation is very

ill-conditioned near marginality, which makes a quantitative comparison impossible.

6. Concluding Remarks.

Much of what we know today about the computed and analytical structure of the

initial stages of unsteady separation has resulted from the introduction of Lagrangian co-

ordinates to the problem. While these coordinates have their well known disadvantages

(e.g. non-uniqueness of the coordinate system, lengthy formulae, lack of a steady state), in

the case of unsteady separation these are outweighed by some of their less publicized advan-

tages (e.g. simplified convection, particle accumulation in the separation region, adaptation

to inviscid boundary-layer thickening, decoupling of the streamwise and normal particle

positions).

In numerical work, a Lagrangian solution for unsteady boundary-layer separation

problems is advantageous because the resolution problems for more conventional proce-

dures are severe. Lagrangian procedures work well for such flows: the first accepted

solution to unsteady two-dimensional separation was Lagrangian, (Van Dommelen & Shen

1980), and since then many other flows have been calculated by this method. Yet based

on our own experiences and those of others, it appears that while most ordinary numerical

techniques will work for Lagrangian coordinates, (e.g. Crank-Nicolson, SOR, LSOR, ADI,

multigrid iteration, approximate factorization, multi-level time discretisations, etc.), they

have to be applied with care. Despite such difficulties Lagrangian coordinates are possibly

the best generally applicable numerical method for obtaining solutions to the boundary-

layer equations when separation occurs. It might also be argued that the common tendency

to concentrate on Eulerian coordinates has been at the expense of the development of more

robust procedures to overcome the difficulties that arise in Lagrangian computations, e.g.

varying coefficients and the need to regenerate the mesh adaptively. A current emphasis is
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on three-dimensional unsteady computations, in order to verify the existence of the three-

dimensional separation structure (see subsection 3.8). For that reason, we have developed

a three-dimensional Lagrangian code; this uses overlapping meshes, local discretizations,

and ADI iteration to resolve some of the topological issues inherent in three-dimensional

curved surfaces.

For analytical work, the advantages of a Lagrangian approach are due to one key

observation; namely that in Lagrangian coordinates the components of particle position

parallel to the surface are governed by momentum equations which decouple from the con-

tinuity equation that specifies the particle position normal to the surface. In part, this

decoupling occurs because the pressure gradient which drives the flow is independent of

the normal coordinate. As a result of the Lagrangian simplifications, a general analytic

theory of unsteady separation can be obtained by hypothesizing that it is only the normal

component of particle position which becomes singular, i.e. by assuming that the other

components of particle position remain regular (a conjecture supported, for example, by

numerical solutions). On this basis, the self-consistency of the asymptotic expansions to

arbitrary high order is clear. More important is the indeterminacy in the asymptotic ex-

pansions which arises because of a certain arbitrariness as to which Lagrangian derivatives

vanish at separation. In the present approach the indeterminacy is removed by assuming

that the smallest possible number of Lagrangian derivatives are zero, while satisfying any

conditions imposed by symmetries. This assumption is clearly plausible, and is supported

by numerical solutions.

In principle, it should also be possible to explain the same separation structures using

Eulerian coordinates; indeed some of the symmetry line singularities were first obtained this

way. However, the complexity of the Eulerian analysis rapidly increases with the number

of dimensions. As a result, even the expansion for two-dimensional asymmetric separation

have not been taken to sufficiently high-order to determine uniquely an arbitrary function

that arises in the analysis. In addition, no purely Eulerian description has been given

either of the general three-dimensional separation structure or of the form of separation

off a symmetry line or axis.

We note that because of the simplicity of the Lagrangian approach, this method of

solution has been applied to a class of problems closely related to the symmetry-line singu-
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larity; namely exact solutions to the two-dimensional Navier-Stokes equations, or the three-

dimensional Euler equations, with symmetry-line, stagnation-point similitude (e.g. Stern

& Paldor (1983), Russell & Landahl (1984), Stuart (1988, 1989), Childress et al. (1989)).

The important point to note about these equations is that the pressure-gradient term in the

x-momentum equation which governs the flow towards the symmetry line, is dependent

only on the time, t; in particular it is independent of the normal co-ordinate, y. Hence,

for a flow that is unbounded as y --* oo, in Lagrangian coordinates the x-momentum

equation decouples from the continuity equation and the two other momentum equations

(cf. classical boundary-layer theory); in 'channel flow' the x-momentum equation and

the continuity equation are coupled through the boundary condition to fix the unknown

pressure gradient.

We recall that for inviscid flows Van Dommelen (1981) has proved that x is a reg-

ular function of Lagrangian coordinates, provided that the streamwise pressure gradient

is regular. Hence for flows unbounded in y, for which it is normal to prescribe a regu-

lar pressure-gradient, the ordinary inviscid singularity has the Banks & Zaturska (1979)

structure. For examples of more general flows leading to the same singularity see Stern &

Paldor (1983), Russell & Landahl (1984), Stuart (1988, 1989), and Childress et al. (1989).

Further, as the numerical boundary-layer solutions of Van Dommelen (1987), Lam (1988)

and Dennis & Ingham (1979) show, these boundary-layer collisions also occur when the do-

main is bounded in the x-direction (in this case the stagnation-point, similitude equations

arise from a Taylor series expansion about the symmetry line).

Childress et al (1989) present, in addition, inviscid 'channel-flow' solutions for which

the pressure gradient is given implicitly and can become infinite within a finite time; this

allows alternative singular behaviour. However, attempts to find equivalent finite-time

singularities in the viscous equations have not yet proved successful (Cox 1989, Budd.,

Dold, & Stuart 1990), especially for a geometry bounded in y.

As an illustration of the simplicity of the Lagrangian approach, the interactive struc-

ture of a new form of asymmetric, marginal separation has been derived. The flow is

assumed to approach, and then recover from, separation on the same timescale as it takes

for a fluid particle to pass over the body; interactive effects are only important for a short

O(R- ) timescale. We find that a 'triple-deck' type interaction can modify, but appar-
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ently not remove, the separation singularity. Although verification of the existence of this

type of marginal separation awaits the numerical solution of the boundary-layer equations,

we envision that the solution will be applicable for flows which start far from separation,

momentarily approach it, and then recover to a strongly attached state, e.g. the temporary

approach of a vortex to a boundary layer, or a pitching airfoil.

We have also shown that finite-time marginal separation cannot occur on a symmetry

line, although it is possible at infinite time. This suggests the possibility of a second type

of asymmetric marginal separation which can occur at infinite time.

Finally, we note that it has been argued (e.g. Ersoy & Walker 1985, Stuart 1988)

that the explosive growth associated with boundary-layer separation singularities may

be related to eruptions from the sub-layer of a turbulent boundary layer, and so with

the regeneration of vorticity in such layers. In particular Ersoy & Walker (1985, 1987)

and Hon & Walker (1988) have studied the boundary-layer flow induced by two of the

proposed basic elements of wall-layer turbulence, namely the hairpin vortex (e.g. Head &

Bandyophadyay 1981) and the discrete loop vorTex (e.g. Falco 1977). Inter alia, they show

that a hairpin vortex with a symmetry plane can induce a separation singularity behind

the vortex head. As yet the boundary-layer calculations are confined to the symmetry line,

and there is no guarantee that the hairpin vortex initiates separation there; indeed two-

dimensional approximations for the flow generated by the counter-rotating hairpin-vortex

legs suggest that initial separation singularities off the symmetry line are possible (e.g.

Ersoy & Walker 1985). However, if the initial separation singularity is not a symmetric

boundary-layer collision then the region of boundary-layer growth will be crescent-shaped

(VDC); as J.D.A. Walker (1989, private communication) has noted, this is in qualitative

agreement with experimental observations.

A complementary view of the eruptions from the sub-layer is that the spanwise mo-

tion induced by the vortices can lead to symmetry-line, boundary-layer collisions (e.g.

Stuart 1988). However, further theory and calculations are needed to determine whether

either or both types of separation are indeed responsible for sub-layer bursting and related

phenomena (e.g. the formation of secondary hairpin vortices).

It has also been suggested that separation singularities may be related to boundary-

layer transition, for instance through the spanwise flow induced by longitudinal vortices
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(e.g. Stuart 1965). Here we refer to the important work of Hall & Smith (1989), and

references therein, concerning vortex/wave interactions. These authors derive nonlinear

modulation equations of novel type, and propose, inter alia, singular terminal forms of

the solutions at finite times or finite distances downstream. Such singularities lead to the

rapid shortening of time and lengthscales - a phenomena typical of transition. We finish

by noting that for some of the modulation equations, especially those of boundary-layer

type, a Lagrangian approach may be advantageous in determining which of the proposed

singularities, and thus which physical processes, are of acceptable form.
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Figure 1. Mechanics of unsteady separation (schematic). (a) The particle deformation
which gives rise to separation. (b) Separation of the boundary layer into sublayers due to

the particle deformation.
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Figure 2. Structure of asymmetric two-dimensional unsteady separation. (a) Lines of con

stant particle position z in the Lagrangian domain, and in the physical domain (inset).
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Figure 2. Structure of asymmetric two-dimensional unsteady separation. (c) Computed

boundary-layer displacement thickness, P", for an impulsively started circular cylinder. o:

coarse grid; 0: Cebeci (1979).
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Figure 2. Structure of asymmetric two-dimensional unsteady separation. (e) Computed lines
of constant velocity for an impulsively started circular cylinder.

Figure 2. Structure of asymmetric two-dimensional unsteady separation. (f) Shape of the
velocity profiles near the separation particle in the middle of the boundary layer.
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Figure 2. Structure of asymmetric two-dimensional unsteady separation. (h) Computed

lines of constant vorticity for an impulsively started circular cylinder.
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Figure 2. Structure of asymmetric two-dimensional unsteady separation. (i) Lines of con-

stant particle position x in the Lagranigian domain, for times beyond initial separation.
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Figure 4. Schematic of asymptotic regions for unsteady boundary-layer collision. At a

symmetry line y+ , 16tL-; at an axis for flow with swirl y+ , 6tI- 1 ; at an axis for flow

without swirl y+
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Figure 5. Boundary-layer collision in a curved pipe. (b) Scaled boundary-layer thickness for

various times.
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Figure 6. Properties of the numerical solution for the symmetry-line separation flow governed

by (5.5, 6). (a) Plots of the separation time, t, (a > a.), and the time, t,,,, at which xf attains

its minimum value (a < a.).
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Figure 6. Properties of the numerical solution for the symmetry-line separation flow governed

by (5.5,6). (b) Plots of t, and t,, against In Ia - a.1 (almost indistinguishable).
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